Tuesday, May 5, 2020

Computers Not the greatest invention of the 20 th Essay Example For Students

Computers Not the greatest invention of the 20 th Essay centuryâ€Å"Computers: Not the Greatest Discovery of the Twentieth Century†Nothing epitomizes modern life better than the computer. For better or worse, computers have infiltrated every aspect of our society. Today, computers do much more than simply compute. Supermarket scanners calculate our grocery bill while keeping store inventory, computerized telephone switching centers play traffic cop to millions of calls and keep lines of communication untangled, and automatic teller machines let us conduct banking transactions from virtually anywhere in the world. But where did all this technology come from and where is it heading? To fully understand and appreciate the impact computers have on our lives and promises they hold for the future, it is important to understand their evolution. The abacus, which emerged about 5,000 years ago in Asia Minor and is still in use today, may be considered the first computer.This device allows users to make computations using a system of slidin g beads arranged on a rack. Early merchants used the abacus to keep trading transactions. But as the use of paper and pencil spread, particularly in Europe, the abacus lost its importance. It took nearly 12 centuries, however, for the next significant advance in computing devices to emerge. In 1642, Blaise Pascal, the 18-year-old son of a French tax collector invented what he called a numerical wheel calculator to help his father with his duties. This brass rectangular box, also called a Pascaline, used eight movable dials to add sums up to eight figures long. Pascals device used a base of ten to accomplish this. For example, as one dial moved ten notches, or one complete revolution, it moved the next dial which represented the tens column one place. When the tens dial moved one revolution, the dial representing the hundreds place moved one notch and so on. The drawback to the Pascaline, of course, was its limitation to addition. In 1694, a German mathematician and philosopher, Go ttfried Wilhem von Leibniz, improved the Pascaline by creating a machine that could also multiply. Like its predecessor, Leibnizs mechanical multiplier worked by a system of gears and dials. Partly by studying Pascals original notes and drawings, Leibniz was able to refine his machine. The centerpiece of the machine was its stepped-drum gear design, which offered an elongated version of the simple flat gear. It wasnt until 1820, however, that mechanical calculators gained widespread use. Charles Xavier Thomas de Colmar invented a machine that could perform the four basic arithmetic functions. Colmars mechanical calculator, the arithometer, presented a more practical approach to computing because it could add, subtract, multiply and divide. With its enhanced versatility, the arithometer was widely used up until the First World War. Although later inventors refined Colmars calculator, together with fellow inventors Pascal and Leibniz, he helped define the age of mechanical computation . The real beginnings of computers as we know them today, however, lay with an English mathematics professor, Charles Babbage. Frustrated at the many errors he found while examining calculations for the Royal Astronomical Society, Babbage declared, I wish to God these calculations had been performed by steam!With those words, the automation of computers had begun. By 1812, Babbage noticed a natural harmony between machines and mathematics: machines were best at performing tasks repeatedly without mistake; while mathematics, particularly the production of mathematic tables, often required the simple repetition of steps. The problem centered on applying the ability of machines to the needs of mathematics. Babbages first attempt at solving this problem was in 1822 when he proposed a machine to perform differential equations, called a Difference Engine. Powered by steam and large as a locomotive, the machine would have a stored program and could perform calculations and print the result s automatically. After working on the Difference Engine for 10 years, Babbage was suddenly inspired to begin work on the first general-purpose computer, which he called the Analytical Engine. Babbages assistant, Augusta Ada King, Countess of Lovelace and daughter of English poet Lord Byron, was instrumental in the machines design. One of the few people who understood the Engines design as well as Babbage, she helped revise plans, secure funding from the British government, and communicate the specifics of the Analytical Engine to the public. Also, Lady Lovelaces fine understanding of the machine allowed her to create the instruction routines to be fed into the computer, making her the first female computer programmer. In the 1980s, the U. S. Defense Department named a programming language in her honor. Babbages steam-powered Engine, although ultimately never constructed, may seem primitive by todays standards. However, it outlined the basic elements of a modern general purpose compu ter and was a breakthrough concept. Consisting of over 50,000 components, the basic design of the Analytical Engine included input devices in the form of perforated cards containing operating instructions and a store for memory of 1,000 numbers of up to 50 decimal digits long. It also contained a mill with a control unit that allowed processing instructions in any sequence, and output devices to produce printed results. Babbage borrowed the idea of punch cards to encode the machines instructions from the Jacquard loom. The loom, produced in 1820 and named after its inventor, Joseph-Marie Jacquard, used punched boards that controlled the patterns to be woven. In 1889, an American inventor, Herman Hollerith, also applied the Jacquard loom concept to computing. His first task was to find a faster way to compute the U.S. Census. The previous census in 1880 had taken nearly seven years to count and with an expanding population, the bureau feared it would take 10 years to count the latest census. Unlike Babbages idea of using perforated cards to instruct the machine, Holleriths method used cards to store data information which he fed into a machine that compiled the results mechanically. Each punch on a card represented one number, and combinations of two punches represented one letter. As many as 80 variables could be stored on a single card. Instead of ten years, census takers compiled their results in just six weeks with Holleriths machine. In addition to their speed, the punch cards served as a storage method for data and they helped reduce computational errors. Hollerith brought his punch card reader into the business world, founding Tabulating Machine Company in 1896, later to become International Business Machines (IBM) in 1924 after a series of mergers.Other companies such as Remington Rand and Burroughs also manufactured punch readers for business use. Both business and government used punch cards for data processing until the 1960s. In the ensuing years, s everal engineers made other significant advances. Vannevar Bush developed a calculator for solving differential equations in 1931. The machine could solve complex differential equations that had long left scientists and mathematicians baffled. The machine was cumbersome because hundreds of gears and shafts were required to represent numbers and their various relationships to each other. To eliminate this bulkiness, John V. Atanasoff, a professor at Iowa State College and his graduate student, Clifford Berry, envisioned an all-electronic computer that applied Boolean algebra to computer circuitry. This approach was based on the mid-19th century work of George Boole who clarified the binary system of algebra, which stated that any mathematical equations could be stated simply as either true or false.By extending this concept to electronic circuits in the form of on or off, Atanasoff and Berry had developed the first all-electronic computer by 1940. Their project, however, lost its fun ding and their work was overshadowed by similar developments by other scientists. Importance of Punctuality in the Military EssayAfter the integrated circuits, the only place to go was down in size, that is. Large-scale integration (LSI) could fit hundreds of components onto one chip. By the 1980s, very large scale integration (VLSI) squeezed hundreds of thousands of components onto a chip. Ultra-large scale integration (ULSI) increased that number into the millions. The ability to fit so much onto an area about half the size of a U.S. dime helped diminish the size and price of computers. It also increased their power, efficiency and reliability. The Intel 4004 chip, developed in 1971, took the integrated circuit one step further by locating all the components of a computer (central processing unit, memory, and input and output controls) on a minuscule chip. Whereas previously the integrated circuit had had to be manufactured to fit a special purpose, now one microprocessor could be manufactured and then programmed to meet any number of demands. Soon everyday h ousehold items such as microwave ovens, television sets and automobiles with electronic fuel injection incorporated microprocessors. Such condensed power allowed everyday people to harness a computers power. They were no longer developed exclusively for large business or government contracts. By the mid-1970s, computer manufacturers sought to bring computers to general consumers. These minicomputers came complete with user-friendly software packages that offered even non-technical users an array of applications, most popularly word processing and spreadsheet programs. Pioneers in this field were Commodore, Radio Shack and Apple Computers. In the early 1980s, arcade video games such as Pac Man and home video game systems such as the Atari 2600 ignited consumer interest for more sophisticated, programmable home computers. In 1981, IBM introduced its personal computer (PC) for use in the home, office and schools. The 1980s saw an expansion in computer use in all three arenas as clones of the IBM PC made the personal computer even more affordable. The number of personal computers in use more than doubled from 2 million in 1981 to 5.5 million in 1982. Ten years later, 65 million PCs were being used. Computers continued their trend toward a smaller size, working their way down from desktop to laptop computers (which could fit inside a briefcase) to palmtop (able to fit inside a breast pocket). In direct competition with IBMs PC was Apples Macintosh line, introduced in 1984. Notable for its user-friendly design, the Macintosh offered an operating system that allowed users to move screen icons instead of typing instructions. Users controlled the screen cursor using a mouse, a device that mimicked the movement of ones hand on the computer screen. As computers became more widespread in the workplace, new ways to harness their potential developed. As smaller computers became more powerful, they could be linked together, or networked, to share memory space, software, info rmation, and communicate with each other. As opposed to a mainframe computer, which was one powerful computer that shared time with many terminals for many applications, networked computers allowed individual computers to form electronic co-ops. Using either direct wiring, called a Local Area Network (LAN), or telephone lines, these networks could reach enormous proportions. A global web of computer circuitry, the Internet, for example, links computers worldwide into a single network of information. During the 1992 U.S. presidential election, vice-presidential candidate Al Gore promised to make the development of this so-called information superhighway an administrative priority. Though the possibilities envisioned by Gore and others for such a large network are often years (if not decades) away from realization, the most popular use today for computer networks such as the Internet is electronic mail, or E-mail, which allows users to type in a computer address and send messages thro ugh networked terminals across the office or across the world. Defining the fifth generation of computers is somewhat difficult because the field is in its infancy. The most famous example of a fifth generation computer is the fictional HAL9000 from Arthur C. Clarke’s novel, 2001: A Space Odyssey. HAL performed all of the functions currently envisioned for real-life fifth generation computers. With artificial intelligence, HAL could reason well enough to hold conversations with its human operators, use visual input, and learn from its own experiences. (Unfortunately, HAL was a little too human and had a psychotic breakdown, commandeering a spaceship and killing most humans on board.) Though the wayward HAL9000 may be far from the reach of real-life computer designers, many of its functions are not. Using recent engineering advances, computers may be able to accept spoken word instructions and imitate human reasoning. The ability to translate a foreign language is also a major goal of fifth generation computers. This feat seemed a simple objective at first, but appeared much more difficult when programmers realized that human understanding relies as much on context and meaning as it does on the simple translation of words. Many advances in the science of computer design and technology are coming together to enable the creation of fifth-generation computers. Two such engineering advances are parallel processing, which replaces von Neumanns single central processing unit design with a system harnessing the power of many CPUs to work as one. Another advance is superconductor technology, which allows the flow of electricity with little or no resistance, greatly improving the speed of information flow. Computers today have some attributes of fifth generation computers. For example, expert systems assist doctors in making diagnoses by applying the problem-solving steps a doctor might use in assessing a patients needs. It will take several more years of develop ment before expert systems are in widespread use. In making a list of the most important inventions or developments of the twentieth century, computers would probably be very high on that list. But it would be incorrect to include computers on this list. It is clear to see that the modern day computer is the culmination of centuries of development, without which computers may not have advanced to the stage that they are now or maybe not even have been developed at all. As computers continue to develop with a decrease in their size and an increase in their speed, these developments will undoubtedly overshadow the efforts of those earlier individuals who laid the groundwork of computer technology. But as history has taught us, it is those few individuals at the forefront of their technologies that have made it possible for man to advance to point that we are now. And it will only continue.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.